Maths Workshop for Parents

Aims of the Workshop

- To provide you with a clear outline of the key features of maths teaching at
- Langrish Primary School
- To provide you with knowledge that you can use at home to support children's maths development

Maths in the past!

 In the 1960s, a lot of time was given to practising methods.

- Research shows that despite this some children found certain methods difficult, forgot them rather quickly or made persistent errors.
- Sometimes, the result was a dislike of the subject,
 which could persist into adult life.
- With the 1970s bringing the introduction of calculators, people began to debate what calculating skills are actually needed in life.

Today's Curriculum

- It is all about embedding knowledge and understanding.
- If you can't explain it you don't understand it!
- Mental methods as well as formal methods need to be understood and applied by children.

Good practice in Maths today!

Mental calculation skills are vital.

Children need the ability to estimate.

e.g. If I have 18 sweets in one bag and 33 sweets in another bag, how many do I have altogether?

Children can estimate by adding 20 and 30 and know that roughly the answer should be around 50.

Mental before written

• We need to first develop a sense of number.

So how do children learn in maths?

Counting of objects and mental counting.

Early stages of calculation with learning of addition and subtraction number facts, with recording.

$$5 + 8 =$$
 or $13 =$

Work with **structured number lines**

Work with larger numbers, unstructured **number lines** and informal **jottings**.

e.g.
$$47 + 26$$

- Your turn: You can decide whether you want to add the O, T or H first.
- Q1) 43 + 9
- Q2) 48 + 56
- Q3) 127 + 145
- Q4) 362 + 165
- Q5) 263 + 1792

Hands on addition and subtraction

Т	0

Addition cont

Beginning to record vertically – the expanded written method

Estimate: 126 +57 is nearly 130 + 60 so estimate answer should be near 190.

Addition cont

Standard vertical method involving carrying – the formal written method.

When children are confident working with larger numbers using the previous strategies, they will be introduced to 'carrying' digits.

2856+1095

Estimate: 2900+1100 =4000 Answer should be less as I have rounded up.

$$\begin{array}{rrr}
 47 & 368 \\
 + 76 & +493 \\
 \hline
 123 & 861 \\
 \hline
 1 & 1
 \end{array}$$

Column Addition

- Try these questions
- Q1) 27 + 84
- Q2) 162 + 64
- Q3) 145 + 253
- Q4) 417 + 485
- Q5) 17306 + 62871
- Q6) 391.9 + 425.3

Achieving Maths Mastery

Inverse operation

79859 - ? = 46860 ? + 54689 = 54759

Puzzles

Making resources for younger children

Magic squares

Missing digits

26?8 + ?256 = 5894

Good practice in Maths today!

All children need to learn maths in a real life context.

As well as knowing 7x7=49. Children need to be able to do the following:

There are 7 fields, each field has 7 sheep in them. How many sheep are there in total?

- Children need to be able to explain how they have calculated something using a method that suits them. If they can't explain it, they don't fully understand it.
- Written calculations, are taught but when children are ready.

Non-negotiable leaflets

Year 2

- Compare and order numbers up to 100 and use < > =
- Read and write all numbers to 100 in digits & words
- Say 10 more/less than any number to 100
- Count in steps of 2, 3 & 5 from zero and in 10s from any number (forwards and backwards)
- Recall and use multiplication & division facts for 2, 5 & 10 tables
- Recall and use +/- facts to 20
- Derive and use related facts to 100
- Recognise place value of any 2-digit number
- Add & subtract: 2-digit nos & ones; 2-digit nos & tens; Two 2-digit nos; Three
 1-digit nos
- Recognise and use inverse (+/-)
- Calculate and write multiplication & division calculations using multiplication tables
- Recognise, find, name and write 1/3; 1/4; 2/4; 3/4
- Write and recognise equivalence of simple fractions
- Tell time to five minutes, including quarter past/to

Technical things for you to remember

- It is exchanging not 'borrowing'
- Encourage your children to use mathematical language
- Encourage them to use different methods
- Use the inverse operation to check their calculation

Remember what is important in maths!

- A focus on mental calculations.
- The ability to estimate.
- To use maths in a real life context.
- To ask children to explain how they have calculated something using a method that suits them.
- Teach children written calculations, but only when they are ready.

Thank you for coming

Keep an eye on the Maths page on the website for further information!

Addition cont

8. Adding decimals

As with all vertical methods, children should know how to line up place value columns and the decimal point under each other.

$$£5.75 + £3.18 =$$

Estimate: £6.00 + £3.00 = £9.00

```
£5.75
+ £3.18

0. 13 (0.05+0.08)

0. 80 (0.70+0.10)

8. 00 (5.00+3.00)

£8.93
```

Subtraction

- 1. Practical subtraction of real objects.
- 2. Mental subtraction of number facts.

3. Use of a **structured number line** to add.

4. Use of an unstructured number line.123 - 47=

Estimate first 120 - 50 = 70

Counting back- (most significant digit first, in this case tens,

then units)

Subtraction cont

5. Counting on (Complimentary addition)

How shopkeepers counted out change (before the till took over!) Children will be taught to find the **difference** by counting on in the following ways.

$$533 - 187 =$$

Estimate: 530 - 190 = 340 (carried out mentally as 530 - 200 + 10 = 340)

Add the numbers on top of the number line to get the answer.

The difference is: 3 + 10 + 300 +30 +3 or 300 + 40+6 = 346

Subtraction cont

6. Towards standard vertical subtraction

When children are confident in finding the difference between larger numbers using number lines, they will begin to be introduced to a more efficient vertical procedure.

Subtraction cont

7. Subtraction by decomposition

Children will then be shown decomposition; they must really understand place

value to do this.

This can be rewritten as 70 + 13- 50 + 520 + 8 = 28 Ten is taken from 80 and added to the three.

A hundred now needs to be moved as well.

$$400 + 120 + 13$$

$$-100 + 80 + 7$$

$$300 + 40 + 6 = 346$$

Good practice in Maths today!

All children need to learn maths in a real life context.

As well as knowing 7x7=49. Children need to be able to do the following:

There are 7 fields, each field has 7 sheep in them. How many sheep are there in total?

- Children need to be able to explain how they have calculated something using a method that suits them. If they can't explain it, they don't fully understand it.
- Written calculations, are taught but when children are ready.

Subtraction continued...

Subtraction cont

8. Subtraction by decomposition

Only when children are completely secure in this we will teach them standard vertical subtraction using decomposition.

Not all children will ever reach this stage.

Multiplying by 10, 100 and 1,000

How would you do this calculation?

120 x 10 =

And this one?

 $34.56 \times 10 =$

Would you use the same method?

Dividing by 10, 100 and 1,000

How would you do this calculation?

$$450 \div 10 =$$

And this one?

$$43.21 \div 10 =$$

Would you use the same method?

One method fits all!!

The children are taught to move the digits depending on whether they are multiplying or dividing.

This method builds on their understanding of place value.

Multiplication

To multiply by 10, move the digits 1 place to the left.

 $345 \times 10 =$

Th H T U

3 4 5

x 10 becomes

Th H T U 3 4 5 0

The number has become 10 times bigger.

To multiply by 100

Th H T U • 10 100

3 4 • 5 6 x 100 becomes

The number has become 100 times bigger.

Th H T
$$U \cdot \frac{1}{10} \cdot \frac{1}{100}$$

3 4 5 6 • 0 0

Each digit has moved 2 places to the left

Division

To divide by 10, move the digits 1 place to the right.

$$345 \div 10 =$$

Th H T U

3 4 5 ÷ 10 becomes

Th H T U $\bullet \frac{1}{10}$

3 4 • 5

The number has become 10 times smaller.

To divide by 100

 $3 \ 4 \ 5 \ 6 \cdot 0 \ 0 \div 100$ becomes

The number has become 100 times smaller.

Th H T U •
$$\frac{1}{10}$$
 $\frac{1}{100}$ 3 4 • 5 6

Each digit has moved 2 places to the right

Multiply and Divide by 10, 100 and 1000

Multiplication

1. Practical Multiplication - 2 x 4 2 lots of 4.

2. Use of arrays 4 x 5

3. Repeated addition

$$4 \times 5 =$$

$$5 + 5 + 5 + 5 = 20$$

or
$$4 + 4 + 4 + 4 + 4 = 20$$

4. Repeated addition can also be done on a number line.

5. Partitioning – Simple recording

$$17 \times 3 = (10 \times 3) + (7 \times 3)$$

 $30 + 21 = 51$

4. The Grid Method This is our key strategy for beginning to formally record multiplication. $17 \times 3 = (10 \times 3) + (7 \times 3)$

$$30 + 21 = 51$$

5. Multiplying two 2 digit numbers 18×23 Estimate $20 \times 20 = 400$.

X	10	8
20	200	160
3	30	24

$$200 + 160 + 30 + 24 = 360 + 54$$

 $360 + 54 = 414$

Add the numbers inside the grid together to get the answer.

Try to add the numbers together mentally. If not, use a written method.

6. 3 digit by 2 digit 156 x 25 = Estimate 160 x 20 = 3200

X	100	50	6
20	2000	1000	120
		900	
5	500	250	30
	#4 # 1000	The Carl	

7. 3 digit by 3 digit 152×385 Estimate $150 \times 400 = 60000$.

5	500	250	10
80	8000	4000	160
300	30000	15000	600
X	100	50	2

8. Once children are confident with the grid method, they will be introduced to the following strategies for recording.

Short multiplication

17 x 3

leads to

9. Long multiplication 184×32 Estimate $180 \times 30 = 5400$.

Division

1. Sharing or Grouping – Division is initially represented pictorially.

$$6 \div 2 = 3$$

6 sweets **shared** between 2 people. How many each?

Sharing and grouping are two totally different concepts that children need to understand.

There are 6 people in a room. Put them into **groups** of 2. How many groups can you make?

$$21 \div 7 = 3$$

Division cont

3. Using Multiples of the Divisor - Chunking.

$$90 \div 5 = 18$$

4. Short division

$$87 \div 4 = 21 \text{ r } 3$$

Division cont

5. Using Chunking with larger numbers.

$$875 \div 24 = 36 \text{ r } 11$$

6. Leading to sums using decimals.

Remember what is important in maths!

- A focus on mental calculations.
- The ability to estimate.
- To use maths in a real life context.
- To ask children to explain how they have calculated something using a method that suits them.
- Teach children written calculations, but only when they are ready.